A Sox10 Expression Screen Identifies an Amino Acid Essential for Erbb3 Function
نویسندگان
چکیده
The neural crest (NC) is a population of embryonic stem cells that gives rise to numerous cell types, including the glia and neurons of the peripheral and enteric nervous systems and the melanocytes of the skin and hair. Mutations in genes and genetic pathways regulating NC development lead to a wide spectrum of human developmental disorders collectively called neurocristopathies. To identify molecular pathways regulating NC development and to understand how alterations in these processes lead to disease, we established an N-ethyl-N-nitrosourea (ENU) mutagenesis screen utilizing a mouse model sensitized for NC defects, Sox10(LacZ/+). Out of 71 pedigrees analyzed, we identified and mapped four heritable loci, called modifier of Sox10 expression pattern 1-4 (msp1-4), which show altered NC patterning. In homozygous msp1 embryos, Sox10(LacZ) expression is absent in cranial ganglia, cranial nerves, and the sympathetic chain; however, the development of other Sox10-expressing cells appears unaffected by the mutation. Linkage analysis, sequencing, and complementation testing confirmed that msp1 is a new allele of the receptor tyrosine kinase Erbb3, Erbb3(msp1), that carries a single amino acid substitution in the extracellular region of the protein. The ENU-induced mutation does not alter protein expression, however, it is sufficient to impair ERBB3 signaling such that the embryonic defects observed in msp1 resemble those of Erbb3 null alleles. Biochemical analysis of the mutant protein showed that ERBB3 is expressed on the cell surface, but its ligand-induced phosphorylation is dramatically reduced by the msp1 mutation. These findings highlight the importance of the mutated residue for ERBB3 receptor function and activation. This study underscores the utility of using an ENU mutagenesis to identify genetic pathways regulating NC development and to dissect the roles of discrete protein domains, both of which contribute to a better understanding of gene function in a cellular and developmental setting.
منابع مشابه
The transcription factor Sox10 is a key regulator of peripheral glial development.
The molecular mechanisms that determine glial cell fate in the vertebrate nervous system have not been elucidated. Peripheral glial cells differentiate from pluripotent neural crest cells. We show here that the transcription factor Sox10 is a key regulator in differentiation of peripheral glial cells. In mice that carry a spontaneous or a targeted mutation of Sox10, neuronal cells form in dorsa...
متن کاملTemporally regulated neural crest transcription factors distinguish neuroectodermal tumors of varying malignancy and differentiation.
Neuroectodermal tumor cells, like neural crest (NC) cells, are pluripotent, proliferative, and migratory. We tested the hypothesis that genetic programs essential to NC development are activated in neuroectodermal tumors. We examined the expression of transcription factors PAX3, PAX7, AP-2alpha, and SOX10 in human embryos and neuroectodermal tumors: neurofibroma, schwannoma, neuroblastoma, mali...
متن کاملP-77: Optimization of Ovine FSH Gene Expression in The Pichiapastoris System byRegulating The Culture Conditions
Background: Ovine follicle stimulation hormone (OFSH) is a pituitary glycoprotein and belongs to the family of glycoprotein hormones. This hormone plays a key role in the function of the reproductive system: it is essential for sertoli cell function and spermatogenesis in testis and it stimulates the growth of ovulatory follicles in females. Ovine FSH hormone is a heterodimeric hormone consisti...
متن کاملLoss of DNA-dependent dimerization of the transcription factor SOX9 as a cause for campomelic dysplasia.
Campomelic dysplasia (CD) is a semilethal osteochondrodysplasia, characterized by skeletal anomalies that include bending of the long bones, and by XY sex reversal. CD results from haploinsufficiency for the transcription factor SOX9, a key regulator at various steps of cartilage differentiation and of early testis development. Two functional domains are so far recognized for SOX9, a high-mobil...
متن کاملCooperative binding of Sox10 to DNA: requirements and consequences.
The high-mobility-group (HMG) domain containing transcription factor Sox10 is an important regulator of various processes including the development of neural crest cells and glial cells. Target gene promoters contain multiple Sox10-binding sites, which either support monomeric or cooperative, dimeric binding. The latter is unusual for Sox proteins and might contribute to functional specificity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Genetics
دوره 4 شماره
صفحات -
تاریخ انتشار 2008